

Applying structural informatics approaches to pharmaceutical supply chain processes

Andrew G.P. Maloney, Mathew J. Bryant and Neil Feeder

The Cambridge Crystallographic Data Centre

The ADDoPT Project

Advanced Digital Design of Pharmaceutical Therapeutics

- Four year collaboration between government, industry and academia
- Instigated by the Medicines Manufacturing Industry Partnership and part funded under the **Advanced Manufacturing Supply Chain Initiative**

If we designed airplanes like we design drugs...

"Why has pharmaceutical research and development lagged so far behind other industries in the development and application of simulation and modelling for research and development?"

W.S Woltosz, J. Comput. Aided Mol. Des. (2012), 26, 159-163

Digital Design: Molecules to medicines

The Cambridge Structural Database

All small-molecule organic & metal-organic crystal structures ever published.

R. P. Wilkie et al., Chem. Commun. (2016), **52**, 10747-10750

The Cambridge Structural Database

All small-molecule organic & metal-organic crystal structures ever published.

Year

Crystal structure is important...

Drug product design and development

Molecule

Form

Particle

Drug product design and development

Molecule

Form

Particle

Drug definition taken from the approved drug database of Drugbank.ca

Generated using InChi strings and the CSD Python API

8632 crystal structures representing 785 drug molecules

Searchable and sortable by categories like hydrates, solvates, salts, cocrystals, pure drug (or any combination of these)

Making a CSD Drug Subset

Comparison to organic molecules in the CSD

A D D P T

Comparison to organic molecules in the CSD

Drug product design and development

Molecule

Form

Particle

Structural Informatics

Characteristics that influence stability

CSD derived knowledge bases

Mogul

Molecular geometry distributions

- Bond lengths
- Valence angles
- Torsion angles
- Rings

Intermolecular geometry analysis

- Interaction distributions displayed as scatterplots or contour surfaces
- 18,000 pre defined interaction scatter plots

Understanding conformational complexity

IsoStar libraries used to map interaction preferences around complete molecules in a crystal structure

The satisfaction of the Full Interactions Maps by the packing shell of the crystal structure can then be used to assess stability

Using Full Interaction Maps to assess stability

Drug product design and development

Molecule

Form

Particle

Crystal structure directs...

- Morphology/crystal growth

- Surface chemistry
- Mechanical properties
- Solubility
- Stability
- Melting point

Start from a base morphology prediction

Assume nucleation onto existing faces to be the rate limiting step in further crystal growth

Use a forcefield to quantify the most favourable site of interaction

As growth rate is proportional to the nucleation rate, this allows us to use nucleation kinetics, including a term for supersaturation

D. Vatvani, "Predicting the morphology of crystals of organic molecules", PhD Thesis

Predicting morphologies

J.F. Bauer, *J. Valid. Technol.* (2009), **15**, 37 - 44 J.Y.Y. Heng, *J. Pharm. Sci.* (2007), **96**(8), 2134 - 2144

Linking experimental and predicted crystal morphologies

loop_	
_exptl_crystal_face_index_h	
_exptl_crystal_face_index_k	
_exptl_crystal_face_index_	
l_exptl_crystal_face_perp_dist	
0.00 1.00 1.00 0.239	/
0.00 -1.00 2.00 0.451	\leftarrow
0.00 -2.00 -1.00 0.216	
0.00 0.00 -1.00 0.201	

	Crystal Face 1	Crystal Face 2	Dihedral angle
1	(-1, 1, 0)	(1, -1, -1)	155.8158
T Pro	(-1, 1, 0)	(-1, 1, 1)	155.8158
	(-1, 1, 0)	(1, 0, 0)	146.1096
6	(-1, 1, 0)	(1, -1, 0)	180
	(-1, 1, 0)	(0, 0, 1)	95.45741
	(-1, 1, 0)	(1, 0, -1)	140.2617
VISXUS	(-1, 1, 0)	(1, -1, -1)	155.8158

 $1.00\ 0.00\ -1.00\ 0.574$ -1.00 0.00 1.00 0.383

RMSD: 10.14

Mechanical properties from structure

C.C. Sun, J. Adhes. Sci. Technol. (2011), 25, 483 - 499

Predicting slip planes

Crystal	Observed	Dreiding	cvff	compass	CCDC Rugosity tool
SLFNMA01	020	002	002	002	010
SLFNMA02	020	020	020	020	010
260457 (UCECAG03)	001	001	001	001	001
CITRAC10	002	002	002	002	001
260456 (UCECAG02)	001	001	001	001	001
PUPBAD01	10-2	10-2	020	011	10-2
PUPBAD02	101	10-1	011	020	101
HXACAN	002	002	200	200	001
HXACAN01	010	110	110	110	010
ЛЛЛОН	002	200	200	200	001
260455 (UCECAG01)	10-1	100	100	100	10-1
ethyl paraben (FEGLEI)	101	100	100	100	101
propyl paraben (DUPKAB)	101	100	100	100	101
calculate the miller pla	ne the line				Plane [0 1 0]
follows using the CSD F	Python API			∕∼⊻	Rugosity = 1.30
	,			\sim	

C.C. Sun and Y.-H. Kiang, J. Pharm. Sci. (2008), 97, 3456-3461

27

Т

ΑD

Making the most of every crystal structure ever published

Molecule

Form

Particle

Acknowledgements

Mat Bryant

Mat.Sci. Team at CCDC Members of the ADDoPT Consortium

