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Background

Up to recently, Iprocess development and process control in the
pharmaceutical industry have been dominated by experimentation. The
definition of the process optimum and the control strategy was supported by
Design of Experiments (DoE) feeding into statistical models.

Despite the great value of such models, they are not always the most suitable
solution to provide answers to complex and non-linear problems. This work
aims to supply a more efficient solution to the process development phase
and the control strategy for first principal models raised in pharma R&D.

At GSK, supported by a new modelling strategy, we are now embedding
mechanistic and first principal models as part of our routine work from the

laboratory to manufacture
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Outline

Introduction

2. Change of strategy: Process development and control supported by modelling
= Workflow / Milestones

= Simulation strategy / Program

3. Case Study — Execution
" Process design

" Process implementation
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Introduction

The lab results were so good

we bypassed Process Development
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Application of Process Simulation

Objectives
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* Process Design and Optimisation
* Selection / Design of equipment platform A D P T
* Design of System Models for Control Strategy



Objectives

Deploy process modelling across Small molecule DS and DP and BioPharmaceutical

_ISupport process development through deployment of modelling
= Development and optimization of the process
= Scalability assessment and enhancement of robustness

= TRA, Tech. transfer and process verification

_ISupport the control strategy by implementation of System based Model
* The integration of appropriate models, statistical and mechanistic

= The deployment of strategic model for prediction of CQAs




New Work Flow Application

Simulation at the Centre of Process Development and Implementation

= System modelling approach defines data
requirement and drives experimental plans

= Quantitative input to CPP identification and
design space boundaries

Industrialisation

= Transfer model from R&D to commercial
manufacturing

--------

S T e i 2/

Kinetic™ Calorimetry - : -

". expel’iment'!.
“ .“ IIIIIIIII

----------

N i 1 I I
/’f L

)



Simulation Platforms

Mapping out of platforms and deliverables

Provide models to support acceleration of
process development.

% Provide models to support control strategy
2 and continuous process improvement.
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Process Simulation Platform

INTERPRETATION DECISION

Equipment
Source 1 D= Library
Reactors
n n f |
Source 2 B i

—/ GSK_specific_R1 GSK_specific_R2
—\ ;
Source 3
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Mechanism
& kinetics
Reactor
Performance Properties
Work up
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: i Reactor
Mechanlsrgdeﬁnltlun ‘§ Crystallisation
\ DATA

Parameter regression [ ]
. FPerformance data embedded within a separate file ls I > P I
Specific model decoupled from t.hE flow The specific file can be called from the reactor model
sheet anly for parameter regression




System-based Modeling: Our Vision

Model development for support

PFR reactor Batch reactor CSTR reactor Flow and batch Flow and batch Batch
Extractor Evaporator Crystallisation
—>
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Source
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Reaction in PFR Reaction in CSTR Evaporation in batch
vessel or flow

ion i ' Component extraction :
Reaction in batch , P equipment e.g. WFE

- in batch vessel or flow
- equipment e.g. RDC

Impurity absorption
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Reaction Scheme

Understanding of the Process Mechanism and rates

Mapping out the main transformation and the side product formation is critical
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Simulation Application: Process Understanding

Specific model decoupled from the flow
sheet only for parameter estimation

DATA

Kinetic orientated exps
Calorimetry
Concentration time course at
various temperature,
concentration, mixing time
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Process Assessment and Selection

Kinetic of the reaction

Batch operation
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Global Systems Analysis

CPP identification

Physical property of the :>
process medium Reaction
» PFR
» CSTR
» Batch
Process Model In-silico sensitivity o .
> Kinetic and thermodynamic |:> analysis against process |:> Definition of equipment
expression hysical rates values and
» Mass and energy balance paramEterS A ranges :>
A > Mass and energy balance Work up
- > Evaporation
- > extraction
. Selection verification K
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Modelling to Support the Registered Control Strategy

Model is used to
= Justify criticality of CPPs against CQAs

" Provide understanding of multivariate Interactions on individual unit
operation and across the entire process

= |dentify Established Conditions (Q12)
= Justify process ranges / Design Space

Development of
Process

Optimisation of

= Support scalability and tech. transfer Process

Modelling upporting Registere¥
Control Strategy

Enhance
manufacturability

This forms part of the Control Strategy Intent and Experimental Plan review




Design space and Operating Conditions

CQAs have been identified and process simulation is used to assess CPP sensitivity and impact on the process
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Modelling Architecture Background

Properties / composition
Transport phenomena

|

HPLC online
16 process sensors

Kinetic model I
Blorons
i
EMERSON.
A
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‘\MATLAB < ........ > r-14 ............................................................
SiPAT

LIVE PRODUCT QUALITY PREDICTION




mass flows
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Conclusion

System Modeling Benefits Realized
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Replace experimentation during Process Design

Reduce rework during Process Design

Use to identify CPPs and PARs/Design Space

Reduce plant Verification / Robustness runs

Increase process understanding

Streamline Risk Assessment

Use for advanced cor:w\/ >







