

Solid Drug Product and Process Design using Multi-Scale Interconnected Flowsheet Modelling and Global System Analysis

Marta Moreno Benito^a, Pankaj Doshi^b, Conrad Davies^a and Dan Braido^c ^aWorldwide Research and Development, Pfizer Inc., Sandwich, UK, ^bWorldwide Research and Development, Pfizer Inc., Groton, CT, US, ^cProcess Systems Enterprise Inc., Cedar Knolls, NJ, US

Systems-based approach in Pharmaceutical Industry

Outline

Model interconnection

Global System Analysis (GSA) methodology

GSA of individual unit operations

- Batch cooling crystallization model
- API milling model
- Roller compaction model
- Dry granulate milling model
- Tablet press model
- In vitro dissolution model

GSA of the interconnected flowsheet

Further applications

Conclusions

Interconnected flowsheet

Global System Analysis methodology

GSA algorithm

- Define the uncertainty distribution of model parameters and inputs
- Define a Monte Carlo simulations scheme
- Calculate the statistics (mean, variance and distributions) from the model output
- Calculate the **Sobol indices** using ANOVA decomposition

Methodology for solving interconnected flowsheets

Input variables and parameters (range, uncertainty distribution)

GSA of individual unit operations

Dominant input variables and parameters and their range

GSA of interconnected flowsheet

Dominant input variables and parameters of the interconnected system

GSA of API crystallization

Batch cooling crystallization model

Processing decisions	Range / Value	Sensitivity ind. d50 API crystal	
Initial temperature (°C)	50 - 90	0.040	
Cooling rate (°C/min)	-1.333 (90->10 in 1h) - -0.1667 (50->10 in 4h)	0.000	
Initial seed mass fraction (g/g)	$0.2e^{-6} - 50e^{-6}$	0.836	
Impeller frequency (rpm)	10-100	0.000	
Absolute supersat. (g API/g tot.)	0-0.05	0.128	

Primary nucleation: *Power law kinetics (relative supersat.)*

Growth & dissolution: *Classical two-step kinetics; Garside et al. (1990)*

6

28th March 2019

GSA of Roller compaction

Roller compaction model

Nip angle, maximum pressure & granule density: *Johanson (1965) and Reynolds et al. (2010)*

Processing decisions	Range / Value	Sensitivity ind. ribbon solid fraction
API PSD location (µm)	20 – 280	0.646
Mass throughput (kg/h)	6-24	0.063
Roll force per width (kN/cm)	2 – 5	0.262
Roller speed (rpm)	2 – 8	0.073

8

Ribbon solid fraction (g/g)

Sensitivity Indices

Attributes Processing decisions	Units	Min	Max	API crystal d50	API milled d50	Ribbon solid fraction	Granulate d50	Tablet tensile strength	API fraction dissolved
Initial crystallizer seed mass	g	0.1	25	0.940	0.070	0.005	0.000	0.009	0.014
Initial absolute supersaturat.	g/g	0	0.05	0.060	0.008	0.001	0.000	0.001	0.002
API mill screen size	μm	50	150		0.843	0.055	0.000	0.089	0.241
API mill impact energy	J/kg	2,000	20,000		0.160	0.010	0.000	0.018	0.046
Roll force per width	kN/cm	2	5			0.849	0.000	0.131	0.176
Roller speed	RPM	2	8			0.175	0.000	0.036	0.036
Granulate mill screen size	μm	200	500				0.698	0.000	0.000
Granulate power law exponent	-	1	3				0.490	0.000	0.000
Tablet diameter	mm	5	11					0.377	0.249
Press compaction force	kN	2	12					0.398	0.298
Dissolution impeller frequency	RPM	10	200						0.019

11

ADDOPT DIGITAL DESIGN SHOWCASE, LONDON

Further applications – Process control & monitoring

Conclusions

- The analysis of interconnected flow sheet models is used to identify the critical process parameters from API crystallization to tablet compaction affecting critical quality attributes and performance of solid drug product.
- Execution of large number of simulation (Virtual DOE) and expansion to use "HPC environment" capabilities are powerful features.
- Hybrid modelling combining mechanistic and statistical models can describe material properties and process behavior.
- Seamless, integrated *in silico* modeling from API and drug product manufacture to oral absorption will become part of work-flow, to improve process robustness and product quality.
- The same models used for digital design of the drug formulation and manufacturing process can be used for digital operation.

Ravi Shanker	Kai Lee
Bob Docherty	David Wilsdon
Martyn Ticehurst	Andy Mitchel
Mary am Ende	John Mack
Susan Ewing	Furqan Tahir
Kevin Girard	Sean Bermingham
Hugh Verrier	

Many thanks for your attention!

