

ADVANCED DIGITAL DESIGN OF PHARMACEUTICAL THERAPEUTICS

A Digital Design Approach to Prediction of Powder Flowability

James Elliott, Xizhong Chen (陈锡忠) and Chunlei Pei (裴春雷)

Macromolecular Materials Laboratory

University of Cambridge

ADDoPT Work Package 4

WP4.1: Solid form, physical and chemical properties, critical quality attributes>

[see talk by Kevin Roberts (Leeds) for further details]

Overview of Work Flow in WP4.8a @ Cambridge

[Umair Zafar (WP.8a Leeds)]

ADDOPT DIGITAL DESIGN SHOWCASE, LONDON

Powder Flow and Ring Shear Test

> Powder flowability can be characterised by a uniaxial compression test:

> The ring shear test is commonly used to estimate the consolidation stress (σ_1) and unconfined yield stress (σ_c)

RST-XS Mr (standard)

Volume: ~ 30 ml

Cross-sectional (annular) area: 24.23 cm²

Outer radius: 32 mm; inner radius: 16 mm

16 bars (3 mm in height) at top and bottom*

Rotational velocity

• 7.5 mm/min; 0.05 rpm (half of the max.) – 0.5 rpm (modelling)

Shear Stress Curves

Yield Curve

28th March 2019

Ring Shear Test for Pharmaceutical Powders

ffc measured under pre-consolidation normal stresses: 2, 5, 10 kPa respectively

	FFC	Size (D ₅₀ μm)	
Tablettose 70	20, 29, 36	200	Lactose monohydrate
Tablettose 100	18, 19, 19	150	Lactose monohydrate
DuraLacH	4.9, 7.0, 8.6	150	Lactose Anhydrous
InHalac400	1.07, 1.18, 1.5	7.7	Lactose monohydrate
PH 102	5.9, 7.1, 7.4	100	MCC, Moisture 3.0-5.0%
PH 102 SCG	7.3, 7.7, 8.8	150	MCC, Moisture 3.0-5.0%
PH 101	4.6, 5.1, 5.4	50	MCC, Moisture 3.0-5.0%
PH 105	2.0, 2.3, 2.5	20	MCC, Moisture ~5.0%
PH DG	6.6, 7.8, 7.4	42	MCC & Calcium phosphate

Cohesion Model in DEM

- > JKR model
 - Surface energy (J/m²)
 - Pull-off force
 - Loading history (incremental)
 - Work of adhesion

Particles are coloured by normal forces (Grayscale) Contacts are coloured by normal forces (RGB)

ADDOPT DIGITAL DESIGN SHC

Hertz 0.16 • 🛑 • JKR - · SJKR 0.14 0.12 Normal force (N) 8000 8000 0.04 0.02 -0.02 -2 10 12 -6 -4 0 2 4 6 8 Normal displacement (m) ×10⁻⁵ 500 Hertz – – JKR ----- SJKR 400 300 Shear stress (Pa) 200 100 0 -100 5 10 15 25 30 20 0

Time (s)

9

28th March 2019

Flow Factor from DEM

Normal stress at pre-shear: 10 kPa Surface energy : 2 J/m²

- > The shear stress increases with the increase of normal stress
- > *ffc increases* with the increase of *pre-consolidation stress* for cohesive powder

The Influence of Particle Properties

The size of spheres

If decreases with the decrease of particle size and increase of surface energy

Design of Experiments (DoE) of Powder Flowability

- > 200,000 particles
- ➢ Diameter: 400 − 800 um
- Spherical particles
- Influence factor (Input)
 - Surface energy: 1.0 3.0 J/m²
 - Friction coefficient: 0.1 0.5
 - Pre-consolidation stress: 2 16 kPa
- Response (output)
 - Flow function coefficient (ffc)
 - Angle of internal friction at yield locus
 - Bulk cohesion

Flow Function Coefficient (ffc)

- ffc decreases with the increase of surface energy and friction and the decrease of the pre-consolidation stress
- > The pre-consolidation stress and surface energy show the most significant influence

Bulk Cohesion

> Bulk cohesion primarily increases with the increase of surface energy

14

28th March 2019

Angle of Internal Friction

> The angle of internal friction primarily increases with the increase of friction coefficient

- The variable importance estimates how significant the factor influence the response in the selected range
- If the variation of the factor causes high variability in the response, the factor is relatively important to the model

	Surface energy	Friction	Pre-consolidation
ffc	0.387	0.092	0.604
Bulk cohesion	0.740	0.146	0.143
Angle of internal friction	0.035	0.868	0.081

	Surface energy	Friction	Pre-consolidation
Overall response	0.387	0.276	0.604

Comparison with Experiments

Glasser, Muzzio et al. (2015, 2016) conducted the ring shear test for 41 types of powders on 3 types of instruments (Schulze, FT4 and Brookfield PFT). The experimental results show that ffc is inversely proportional to the cohesion normalised by the pre-consolidation stress

The simulation results are consistent with experimental results, showing that flowability is well-captured by digital model

> Wang, et al., Powder Technology, 2016, 294, 105-112 Koynov, et al., Powder Technology, 2015, 283, 103-112

Influence of Particle Shape

Spherical vs Elongated Fconst Equivalent volume diameter JKR cohesion Sphere Sphere Nomial shear stress (Pa) -AR2 10000 AR4 5000 Aspect ratio = 2 0 0.2 0.8 0.4 0.6 0 Aspect ratio = 4 Shear displacement

ADDOPT DIGITAL DESIGN SHOWCASE, LONDON

Influence of Particle Shape

The particle shape plays a role in the angle of friction of failure which also varies the interception on the axis of shear stress.

19

ADDOPT DIGITAL DESIGN SHOWCASE, LONDON

Particle Shape from X-ray CT (INFORM 2020)

Concluding remarks

- A Design of Experiments approach based on Discrete Element Modelling was conducted to examine the influence (variable importance) of surface energy, friction and pre-consolidation stress on the powder flowability (ffc), internal friction angle and bulk cohesion.
- DEM can be employed to study the powder flowability in a ring shear cell and the influence of particle and process properties
- The surface energy and friction between particles contribute significantly to the bulk cohesion and internal friction angle, respectively
- Modification of the particle shape can significantly alter the powder flow properties
- > These insights be applied in practice through a <u>digital process design tool</u>

Acknowledgements

22

Dr Xizhong Chen (陈锡忠)

The Cambridge Crystallographic Data Centre

GlaxoSmithKline

UNIVERSITY OF LEEDS

