

ADVANCED DIGITAL DESIGN OF PHARMACEUTICAL THERAPEUTICS

Numerical Modelling of Spray Coating of Pharmaceutical Tablets

Chunlei Pei and James A. Elliott

Department of Materials Science and Metallurgy, University of Cambridge 27 Charles Babbage Rd, Cambridge CB3 0FS (jae1001@cam.ac.uk)

1. Introduction

- Pharmaceutical tablets are commonly spray-coated with film layers for cosmetic or functional purposes.
- The inter- and intra-tablet coating thickness variabilities are crucial parameters in determining the quality of the coating process and the final tablet products.
- \succ In this study, the spray coating process of pharmaceutical tablets and its in-line measurement were modelled and analysed using discrete element method (DEM) simulations combined with image analysis and ray-tracing methods.

2. Modelling Scheme

UNIVERSITY OF CAMBRIDGE

3. DEM Modelling of Spray Coating

The spray coating process of various tablets was modelled using DEM [1] and image analysis method [2], and a ray-tracing method [3] was used to model the coating process and sample the location of coating deposition.

Figure 1: DEM model of spray coating

Figure 3: Coated tablets during spray coating

Figure 2: Image analysis of spray zone (black ellipse)

Figure 4: Ray-tracing following spray direction

4. Ray-Tracing of Coating Thickness during Mixing

The terahertz in-line sampling method in experiments is modelled using a ray-tracing method to sample the coating thickness of pre-coated tablets during mixing.

The cap-to-band coating thickness ratio should be equal to the cap-to-band projected area ratio normalised by the cap-to-band surface area ratio. If not, there will be a non-zero asymptotic value of intra-tablet variability.

5. Future Scope

- The influence of process conditions on the spray coating process.
- The modelling of in-line sampling of coating thickness during spray coating of tablets.

Figure 9: Experimental setup [4]

Figure 10: Ray-tracing modes

- The hit rate in the reflection mode matches the experimental data, while the direct modes (normal and oblique) gives a significantly larger hit ratio.
- The ray-traced coating thickness distribution agrees well with the inline measurements using terahertz from experiments.

Figure 11: Hit rates of various ray-tracing modes Figure 12: Coating thickness distribution from modelling and experiments

Collaborations

- Tablet shape can be obtained from WP 4.9.
- Numerical and experimental data can be used for big data in WP 3.

- Modelling of optical coherence tomography (OCT) to study thinner coating thicknesses ($< 40 \ \mu m$).
- Big data analysis based on numerical and experimental data.

[1] Kloss, C. et al., Prog. Comput. Fluid Dy., An Int. J., 2012(12): 140 – 152 [2] Freireich, B et al, Chem. Eng. Sci. 2015(131): 197–212 [3] Toschkoff, G, et al., J. Pharm. Sci. 2015(104): 4082–4092 [4] Courtesy of Drs J. Axel Zeitler and Hungyen Lin from University of Cambridge

ADDoPT is a collaboration instigated by the Medicines Manufacturing Industry Partnership, and part funded under the Advanced Manufacturing Supply Chain Initiative, a BIS initiative delivered by Finance Birmingham and Birmingham City Council.

