

Understanding **Dissolution Rate**

Chyme

			T	
Peristaltic pulses drive:	Pulse frequencies:		loo	
Flow	Stomach	3/min		
Shear	Duodenum	12/min		
Mixing	lleum	9/min		
	Large intestine	2/hour		

Transformation	Entities	Properties	Physics	Parameters	Order of Magnitude
Dissolution	All dissolved species All soluble solid species Chyme	[Solutes] Solubility	Diffusion	Diffusion coefficients	Minutes
Permeation	All dissolved species Chyme Membrane Blood	[Solutes]	Osmosis	Osmotic pressure	Seconds

				Longitud	inal Muscle
Transformation	Entities	Properties	Physics	Parameters	Order of Magnitude
Mixing	All dissolved species All solid species	[all species] Viscosity Density Particle size	Flow profile Turbulence	Reynolds number	Seconds every 10's seconds

Does the

Estimation of dissolution rate requires some consideration of the active surface area involved in dissolution.

Models tend to assume spherical particles

Which definition for an equivalent diameter sphere is the best representation of the complicated surface of a real particle?

Is the Sauter Mean diameter the right parameter for dissolution?

Sauter mean,
$$d_{32} = \frac{d_v^2}{d_s^2}$$

Surface dia,
$$d_s = \sqrt{\frac{A_p}{\pi}}$$

Volume dia,
$$d_v = (\frac{6V_p}{\pi})^{\frac{1}{3}}$$

If the Sauter mean is used to describe the particle size, it can be probably used to allow a relatively simple comparison relative dissolution rates.

Shear stress applied

Gradual Break-up of API Agglomerate into Primary Particles

Scale: Primary API Particle Surfaces

ADDoPT is a collaboration instigated by the Medicines Manufacturing Industry Partnership, and part funded under the Advanced Manufacturing Supply Chain Initiative, a BEIS initiative delivered by Finance Birmingham and Birmingham City Council.

