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ADVANCED DIGITAL DESIGN OF PHARMACEUTICAL THERAPEUTICS
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Flow Stomach 3/min
Shear Duodenum 12/min
Mixing lleum 3/min Transformation | Entities | Properties | Physics | Parameters | Order of Magnitude
Large Intestine 2/hour Mixing All dissolved  [all species]  Flow profile Reynolds Seconds every 10’s
species Viscosity Turbulence number seconds
Transformation | Entities | Properties | Physics | Parameters | Order of Magnitude Allsolid  Density
Dissolution All dissolved  [Solutes]  Diffusion Diffusion Minutes SIS Particle size
species Solubility coefficients Chyme
All soluble
solid species
Chyme
Permeation All dissolved  [Solutes] Osmosis Osmotic Seconds
species pressure
Chyme
Membrane
Blood
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Surface Area of API Particle

What is the API Particle Surface Really Like?

Estimation of dissolution rate requires some consideration of the How will particle evolve?

Cracking active surface area involved in dissolution. « Wil it break up?
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Gradual Break-up of APl Agglomerate into Primary Particles

1
Volume dia,d, = (—p)3
Primary T

particle/crystal If the Sauter mean is used to describe the particle size, it can be
probably used to allow a relatively simple comparison relative
dissolution rates.
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